Your browser doesn't support javascript.
Show: 20 | 50 | 100
Results 1 - 20 de 86
Filter
1.
Pharmaceutical Technology Europe ; 33(5):17-18,20-21, 2021.
Article in English | ProQuest Central | ID: covidwho-20243761

ABSTRACT

According to recent market research, the vaccines market is expected to grow at a compound annual rate of 14.7% for the forecast period of 2020-2026 (1), the growth of which has been accelerated by the recent COVID-19 pandemic. Durability of glass vials at very low temperatures and permeability of plastic vials has complicated the packaging decisions as well." Since the beginning of the pandemic, the bio/pharma industry has been under pressure to produce stable formulations for effective vaccines in accelerated timescales, Blouet asserts. [...]the drive for a COVID-19 vaccine has occurred during a period of increased basic scientific understanding, such as in genomics and structural biology, supporting a new wave of vaccine development and production, she says. According to Phadnis, in addition to single-use technologies, automation for high throughput and robust analytical assays are necessary for rapid turnover during development and manufacturing of vaccines.

2.
Frontiers of COVID-19: Scientific and Clinical Aspects of the Novel Coronavirus 2019 ; : 49-66, 2022.
Article in English | Scopus | ID: covidwho-20240616

ABSTRACT

The year 2020 will be marked in history as being the year of the coronavirus global pandemic. Having already passed 1 year since the outbreak of COVID-19, we are yet to establish effective antiviral treatments that are specific for this disease particularly given the strong focus on the design and development of preventative vaccines. The biological and structural characteristics of SARS-CoV-2 will no doubt provide important information that can be harnessed into anti-SARS-CoV-2 therapies to hopefully limit virus-driven morbidity, mortality and dissemination throughout the population. In this chapter, we will provide detail on the SARS-CoV-2 genome and discuss the importance of key encoded proteins essential for this virus to cause such mass global chaos. We will also discuss the diversity of SARS-CoV-2 variants that have so far emerged and their divergence from other coronaviruses. Understanding these important aspects of SARS-CoV-2 will help guide us in our current fight against this devastating disease. © The Editor(s) (if applicable) and The Author(s), under exclusive license to Springer Nature Switzerland AG 2022.

3.
Transboundary and Emerging Diseases ; 2023, 2023.
Article in English | ProQuest Central | ID: covidwho-20234047

ABSTRACT

Infectious bronchitis virus (IBV) is distributed worldwide and causes significant losses in the poultry industry. In recent decades, lineages GI-19 and GI-7 have become the most prevalent IBV strains in China. However, the molecular evolution and phylodynamics of the lineage GI-7 IBV strains remain largely unknown. In this study, we identified 19 IBV strains from clinical samples from January 2021 to June 2022 in China, including 12 strains of GI-19, 3 strains of GI-7, and 1 strain each of GI-1, GI-9, GI-13, and GI-28. These results indicated that lineages GI-19 and GI-7 IBVs are still the most prevalent IBVs in China. Here, we investigated the evolution and transmission dynamics of lineage GI-7 IBVs. Our results revealed that the Taiwan province might be the origin of lineage GI-7 IBVs and that South China plays an important role in the spread of IBV. Furthermore, we found low codon usage bias of the S1 gene in lineage GI-7 IBVs. This allowed IBV to replicate in the host during evolution as a result of reduced competition, mainly driven by natural selection and mutational pressure, where the role of natural selection is more prominent. Collectively, our results reveal the genetic diversity and evolutionary dynamics of lineage GI-7 IBVs, which could assist in the prevention and control of viral infection.

4.
Pathogens ; 12(5)2023 May 11.
Article in English | MEDLINE | ID: covidwho-20245337

ABSTRACT

Infectious bronchitis virus (IBV) is an enveloped and positive-sense single-stranded RNA virus. IBV was the first coronavirus to be discovered and predominantly causes respiratory disease in commercial poultry worldwide. This review summarizes several important aspects of IBV, including epidemiology, genetic diversity, antigenic diversity, and multiple system disease caused by IBV as well as vaccination and antiviral strategies. Understanding these areas will provide insight into the mechanism of pathogenicity and immunoprotection of IBV and may improve prevention and control strategies for the disease.

5.
J Med Virol ; 95(6): e28861, 2023 06.
Article in English | MEDLINE | ID: covidwho-20245033

ABSTRACT

The seasonal human coronaviruses (HCoVs) have zoonotic origins, repeated infections, and global transmission. The objectives of this study are to elaborate the epidemiological and evolutionary characteristics of HCoVs from patients with acute respiratory illness. We conducted a multicenter surveillance at 36 sentinel hospitals of Beijing Metropolis, China, during 2016-2019. Patients with influenza-like illness (ILI) and severe acute respiratory infection (SARI) were included, and submitted respiratory samples for screening HCoVs by multiplex real-time reverse transcription-polymerase chain reaction assays. All the positive samples were used for metatranscriptomic sequencing to get whole genomes of HCoVs for genetical and evolutionary analyses. Totally, 321 of 15 677 patients with ILI or SARI were found to be positive for HCoVs, with an infection rate of 2.0% (95% confidence interval, 1.8%-2.3%). HCoV-229E, HCoV-NL63, HCoV-OC43, and HCoV-HKU1 infections accounted for 18.7%, 38.3%, 40.5%, and 2.5%, respectively. In comparison to ILI cases, SARI cases were significantly older, more likely caused by HCoV-229E and HCoV-OC43, and more often co-infected with other respiratory pathogens. A total of 179 full genome sequences of HCoVs were obtained from 321 positive patients. The phylogenetical analyses revealed that HCoV-229E, HCoV-NL63 and HCoV-OC43 continuously yielded novel lineages, respectively. The nonsynonymous to synonymous ratio of all key genes in each HCoV was less than one, indicating that all four HCoVs were under negative selection pressure. Multiple substitution modes were observed in spike glycoprotein among the four HCoVs. Our findings highlight the importance of enhancing surveillance on HCoVs, and imply that more variants might occur in the future.


Subject(s)
Coronavirus 229E, Human , Coronavirus NL63, Human , Coronavirus OC43, Human , Humans , Seasons , Betacoronavirus , China , Coronavirus OC43, Human/genetics
6.
BMC Genomics ; 24(1): 312, 2023 Jun 10.
Article in English | MEDLINE | ID: covidwho-20240423

ABSTRACT

BACKGROUND: The emergence and rapid spread of new severe acute respiratory syndrome coronavirus 2 (SARS-COV-2) variants have challenged the control of the COVID-19 pandemic globally. Burundi was not spared by that pandemic, but the genetic diversity, evolution, and epidemiology of those variants in the country remained poorly understood. The present study sought to investigate the role of different SARS-COV-2 variants in the successive COVID-19 waves experienced in Burundi and the impact of their evolution on the course of that pandemic. We conducted a cross-sectional descriptive study using positive SARS-COV-2 samples for genomic sequencing. Subsequently, we performed statistical and bioinformatics analyses of the genome sequences in light of available metadata. RESULTS: In total, we documented 27 PANGO lineages of which BA.1, B.1.617.2, AY.46, AY.122, and BA.1.1, all VOCs, accounted for 83.15% of all the genomes isolated in Burundi from May 2021 to January 2022. Delta (B.1.617.2) and its descendants predominated the peak observed in July-October 2021. It replaced the previously predominant B.1.351 lineage. It was itself subsequently replaced by Omicron (B.1.1.529, BA.1, and BA.1.1). Furthermore, we identified amino acid mutations including E484K, D614G, and L452R known to increase infectivity and immune escape in the spike proteins of Delta and Omicron variants isolated in Burundi. The SARS-COV-2 genomes from imported and community-detected cases were genetically closely related. CONCLUSION: The global emergence of SARS-COV-2 VOCs and their subsequent introductions in Burundi was accompanied by new peaks (waves) of COVID-19. The relaxation of travel restrictions and the mutations occurring in the virus genome played an important role in the introduction and the spread of new SARS-COV-2 variants in the country. It is of utmost importance to strengthen the genomic surveillance of SARS-COV-2, enhance the protection by increasing the SARS-COV-2 vaccine coverage, and adjust the public health and social measures ahead of the emergence or introduction of new SARS-COV-2 VOCs in the country.


Subject(s)
COVID-19 , SARS-CoV-2 , Humans , SARS-CoV-2/genetics , COVID-19 Vaccines , Cross-Sectional Studies , Pandemics , COVID-19/epidemiology , Genomics
7.
Virus Evol ; 9(1): veac121, 2023.
Article in English | MEDLINE | ID: covidwho-2326490

ABSTRACT

The first case of coronavirus disease 2019 (COVID-19) in Cambodia was confirmed on 27 January 2020 in a traveller from Wuhan. Cambodia subsequently implemented strict travel restrictions, and although intermittent cases were reported during the first year of the COVID-19 pandemic, no apparent widespread community transmission was detected. Investigating the routes of severe acute respiratory coronavirus 2 (SARS-CoV-2) introduction into the country was critical for evaluating the implementation of public health interventions and assessing the effectiveness of social control measures. Genomic sequencing technologies have enabled rapid detection and monitoring of emerging variants of SARS-CoV-2. Here, we detected 478 confirmed COVID-19 cases in Cambodia between 27 January 2020 and 14 February 2021, 81.3 per cent in imported cases. Among them, fifty-four SARS-CoV-2 genomes were sequenced and analysed along with representative global lineages. Despite the low number of confirmed cases, we found a high diversity of Cambodian viruses that belonged to at least seventeen distinct PANGO lineages. Phylogenetic inference of SARS-CoV-2 revealed that the genetic diversity of Cambodian viruses resulted from multiple independent introductions from diverse regions, predominantly, Eastern Asia, Europe, and Southeast Asia. Most cases were quickly isolated, limiting community spread, although there was an A.23.1 variant cluster in Phnom Penh in November 2020 that resulted in a small-scale local transmission. The overall low incidence of COVID-19 infections suggests that Cambodia's early containment strategies, including travel restrictions, aggressive testing and strict quarantine measures, were effective in preventing large community outbreaks of COVID-19.

8.
Transboundary and Emerging Diseases ; 2023, 2023.
Article in German | ProQuest Central | ID: covidwho-2306487

ABSTRACT

The recent COVID-19 pandemic has once again caught the attention of people on the probable zoonotic transmission from animals to humans, but the role of companion animals in the coronavirus (CoV) epidemiology still remains unknown. The present study was aimed to investigate epidemiology and molecular characterizations of CoVs from companion animals in Chengdu city, Southwest China. 523 clinical samples from 393 animals were collected from one veterinary hospital between 2020 and 2021, and the presence of CoVs was detected by end-point PCR using pan-CoV assay targeting the RdRp gene. Partial and complete S genes were sequenced for further genotyping and genetic diversity analysis. A total of 162 (31.0%, 162/523) samples and 146 (37.2%, 146/393) animals were tested positive for CoVs. The positive rate in rectal swabs was higher than that in eye/nose/mouth swabs and ascitic fluid but was not statistically different between clinically healthy and diseased ones. Genotyping identified twenty-two feline enteric coronavirus (FCoV) I, four canine enteric coronavirus (CECoV) I, fourteen CECoV IIa, and one CECoV IIb, respectively. Eight complete S genes, including one canine respiratory coronavirus (CRCoV) strain, were successfully obtained. FCoV strains (F21071412 and F21061627) were more closely related to CECoV strains than CRCoV, and C21041821-2 showed potential recombination event. In addition, furin cleavage site between S1 and S2 was identified in two strains. The study supplemented epidemiological information and natural gene pool of CoVs from companion animals. Further understanding of other functional units of CoVs is needed, so as to contribute to the prevention and control of emerging infectious diseases.

9.
Transboundary and Emerging Diseases ; 2023, 2023.
Article in German | ProQuest Central | ID: covidwho-2298636

ABSTRACT

Porcine epidemic diarrhea virus (PEDV) is a porcine enteric coronavirus globally, causing serious economic losses to the global pig industry since 2010. Here, a PEDV CH/Yinchuan/2021 strain was isolated in a CV777-vaccinated sow farm which experienced a large-scale PEDV invasion in Yinchuan, China, in 2021. Our results demonstrated that the CH/Yinchuan/2021 isolate could efficiently propagate in Vero cells, and its proliferation ability was weaker than that of CV777 at 10 passages (P10). Phylogenetic analysis of the S gene revealed that CH/Yinchuan/2021 was clustered into subgroup GIIa, forming an independent branch with 2020-2021 isolates in China. Moreover, GII was obviously allocated into four clades, showing regional and temporal differences in PEDV global isolates. Notably, CH/Yinchuan/2021 was analyzed as a recombinant originated from an American isolate and a Chinese isolate, with a big recombinant region spanning ORF1a and S1. Importantly, we found that CH/Yinchuan/2021 harbored multiple mutations relative to CV777 in neutralizing epitopes (S10, S1A, COE, and SS6). Homology modelling showed that these amino acid differences in S protein occur on the surface of its structure, especially the insertion and deletion of multiple consecutive residues at the S10 epitope. In addition, cross-neutralization analysis confirmed that the differences in the S protein of CH/Yinchuan/2021 changed its antigenicity compared with the CV777 strain, resulting in a different neutralization profile. Animal pathogenicity test showed that CH/Yinchuan/2021 caused PEDV-typified symptoms and 100% mortality in 3-day-old piglets. These data will provide valuable information to understand the epidemiology, molecular characteristics, evolution, and antigenicity of PEDV circulating in China.

10.
Pathogens ; 12(4)2023 Apr 21.
Article in English | MEDLINE | ID: covidwho-2303421

ABSTRACT

BACKGROUND: Multiple severe acute respiratory syndrome coronavirus 2 (SARS-CoV-2) variants emerged globally during the recent coronavirus disease (COVID-19) pandemic. From April 2020 to April 2021, Thailand experienced three COVID-19 waves, and each wave was driven by different variants. Therefore, we aimed to analyze the genetic diversity of circulating SARS-CoV-2 using whole-genome sequencing analysis. METHODS: A total of 33 SARS-CoV-2 positive samples from three consecutive COVID-19 waves were collected and sequenced by whole-genome sequencing, of which, 8, 10, and 15 samples were derived from the first, second, and third waves, respectively. The genetic diversity of variants in each wave and the correlation between mutations and disease severity were explored. RESULTS: During the first wave, A.6, B, B.1, and B.1.375 were found to be predominant. The occurrence of mutations in these lineages was associated with low asymptomatic and mild symptoms, providing no transmission advantage and resulting in extinction after a few months of circulation. B.1.36.16, the predominant lineage of the second wave, caused more symptomatic COVID-19 cases and contained a small number of key mutations. This variant was replaced by the VOC alpha variant, which later became dominant in the third wave. We found that B.1.1.7 lineage-specific mutations were crucial for increasing transmissibility and infectivity, but not likely associated with disease severity. There were six additional mutations found only in severe COVID-19 patients, which might have altered the virus phenotype with an inclination toward more highly pathogenic SARS-CoV-2. CONCLUSION: The findings of this study highlighted the importance of whole-genome analysis in tracking newly emerging variants, exploring the genetic determinants essential for transmissibility, infectivity, and pathogenicity, and helping better understand the evolutionary process in the adaptation of viruses in humans.

11.
Genetics and Biodiversity Journal ; 7(1):75-87, 2023.
Article in English | GIM | ID: covidwho-2269734

ABSTRACT

Being pushed by natural selection, random genetic drift, gene editions, and receptor immunity response, viruses develop constantly through mutations affecting different genes and leading to genetic diversity and producing new variants. In order to know well how a mutation could have an impact on the possibility of being infected, on transmission, and on aggressivity of SARS-CoV-2 it would be important to study these mutations. To be able to carry out a comparative study between variants and undergone mutations over many countries in the world, we've dealt with many genomic sequences that have been rapidly accumulated in the GenBank since January 2020, and published by many laboratories over the world. These sequences allowed us to establish phylogenetical trees using a strong bioinformatic tool, just enhanced to study Covid which is MEGA version 11. Distribution of shifted sequences of different variants over the world within phylogenetical trees shows that the overwhelming majority of detected mutations are accumulated in the 5 known variants Alpha (B.1.1.7), Beta (B.1.351), Delta (B.1.617.2), Gamma (P.1) et Omicron (B.1.1.529), especially within their most variable genes, structural genes of which are N (Nucleocapsid protein) and S (Spike glycoprotein) added to functional ones ORF (Open Reading Frame : ORF1ab, ORF3a);hence, variants holding these mutations are the most dominant and the most infectious this time in the world.

12.
Current Topics in Virology ; 18:31-38, 2021.
Article in English | GIM | ID: covidwho-2288342

ABSTRACT

SARS-CoV-2 is the seventh zoonotic pathogenic novel member of the human coronaviruses and the third coronavirus to cause a large-scale epidemic in the twenty-first century, highly contagious, spreading quickly around the world and affecting all individuals, especially the elderly, those with diverse genetic and immunological backgrounds, also those with multiple underlying disorders and varied demographics like sex and environmental conditions. This work introduces the virology of the novel virus, reveals its possible origin and describes how it spreads via the diverse routes of infection, showing the biological characteristics related to its risk of causing a pandemic, and the kind of diagnostic tools used to identify it. The virus pandemic rapidly progressed worldwide and is still ongoing;the numbers of affected and those deceased are increasing, with devastating societal, economic and political impacts.

13.
Sustainability ; 15(3):2459, 2023.
Article in English | ProQuest Central | ID: covidwho-2287972

ABSTRACT

Yield and yield attributes are important components in genotypic evaluation. The butterfly pea is a native plant of Indonesia, and it is considered an underutilized crop. The goals of this study were to evaluate genotypes using environment (year) interactions (GEIs) with yield and yield attributes, and evaluate butterfly pea genotypes based on stability measurements and sustainability index (SI). The study was conducted at the Ciparanje Experimental Field, Faculty of Agriculture, Universitas Padjadjaran using 35 butterfly pea genotypes in a randomized complete block design with two replications. The field trial was conducted over three years (2018–2020). The results showed that the yield and yield attributes were influenced by GEIs. Additive main effects and multiplicative interaction (AMMI) selected 11 stable genotypes (31.43%);genotype plus genotype by environment interaction (GGE) biplot, AMMI stability value (ASV), and genotype stability index (GSI), each selected six genotypes (17.14%) that were stable and high-yielding, and SI selected 18 genotypes (51.43%) that were stable and high-yielding. There were three genotypes identified by all measurements, namely G2, G14, and G16. These three genotypes can be selected as the superior genotypes of the butterfly pea for flower production, and can be used as material for crosses in plant-breeding prog.

14.
Genomics and Applied Biology ; 41(8):1692-1702, 2022.
Article in English, Chinese | CAB Abstracts | ID: covidwho-2280669

ABSTRACT

In order to understand the genomic characteristics and molecular genetic diversity of porcine epidemic diarrhea virus(PEDV) in Guangxi in recent years, 11 pairs of specific primers were designed to detect the whole genome of PEDV GXNN isolated from porcine diarrhea in Nanning, Guangxi, China, and similarity comparison, genetic evolution, gene variation and S gene recombination were also analyzed. The results showed that full length of the GXNN strain was 28 035 bp, had similar genomic characteristics with other PEDV isolates, about 96.4%-98.7% nucleotide similarity with different reference strains, and the nucleotide similarity of S, ORF3, M and N genes was 93.7%-98.9%, 90.9%-99.4%, 97.4%-99.7% and 95.6%-99.2%;the amino acid similarity of them was 92.9%-99.5%, 91.3%-99.1%, 97.4%-99.1% and 96.4%-99.5%. GXNN is closely related to most domestic isolates in recent years. Phylogenetic tree showed that GXNN closely related to most strains isolated in China recent years, belonged to GII-b subtype. However, it was low relatedness to classic vaccine strains, domestic early epidemic strains, foreign epidemic strains and Guangxi CH-GX-2015-750 A, they belong to different subtypes. Compared with the 5 vaccine strains, the S gene of GXNN stain has a large variation, by inserting amino acid Q at positions 118 844 and 905 sizes, four unique amino acid mutations in the core neutralizing epitope(COE)region and the main epitope region, and 14 mutations in other regions. 126 T/A, 199 A/V and 103 T/A site mutations of ORF3, M and N genes were happened at position 126, 4 D4 region and PN-D4 region, respectively. Recombination analysis revealed that there was a potential recombination region in the hypervariable region of S gene at 826-3 142 nt. This study successfully obtained the complete genome sequence of a PEDV strain, and analyzed its genetic variation and provided a reference for PEDV molecular epidemiology research and new vaccine development.

15.
Infectious Diseases Now ; 52(8 Suppl):S1-S22, 2022.
Article in English | GIM | ID: covidwho-2247141

ABSTRACT

This special issue includes 10 articles that discuss SARS-CoV-2 genetic diversity;heterologous prime boost COVID 19 vaccination;pros and cons of vaccinating children;progress in treatment of immunocompromised COVID-19 patients;pharmacovigilance for COVID-19 vaccines;attitudes of French adults toward COVID-19 vaccination;attitudes of healthcare professionals toward the COVID-19 vaccination campaign in France.

16.
Int J Infect Dis ; 131: 87-94, 2023 Jun.
Article in English | MEDLINE | ID: covidwho-2250705

ABSTRACT

OBJECTIVES: The World Health Organization priority zoonotic pathogen Middle East respiratory syndrome (MERS) coronavirus (CoV) has a high case fatality rate in humans and circulates in camels worldwide. METHODS: We performed a global analysis of human and camel MERS-CoV infections, epidemiology, genomic sequences, clades, lineages, and geographical origins for the period January 1, 2012 to August 3, 2022. MERS-CoV Surface gene sequences (4061 bp) were extracted from GenBank, and a phylogenetic maximum likelihood tree was constructed. RESULTS: As of August 2022, 2591 human MERS cases from 26 countries were reported to the World Health Organization (Saudi Arabia, 2184 cases, including 813 deaths [case fatality rate: 37.2%]) Although declining in numbers, MERS cases continue to be reported from the Middle East. A total of 728 MERS-CoV genomes were identified (the largest numbers were from Saudi Arabia [222: human = 146, camels = 76] and the United Arab Emirates [176: human = 21, camels = 155]). A total of 501 'S'-gene sequences were used for phylogenetic tree construction (camels [n = 264], humans [n = 226], bats [n = 8], other [n=3]). Three MERS-CoV clades were identified: clade B, which is the largest, followed by clade A and clade C. Of the 462 clade B lineages, lineage 5 was predominant (n = 177). CONCLUSION: MERS-CoV remains a threat to global health security. MERS-CoV variants continue circulating in humans and camels. The recombination rates indicate co-infections with different MERS-CoV lineages. Proactive surveillance of MERS-CoV infections and variants of concern in camels and humans worldwide, and development of a MERS vaccine, are essential for epidemic preparedness.


Subject(s)
Coronavirus Infections , Middle East Respiratory Syndrome Coronavirus , Animals , Humans , Middle East Respiratory Syndrome Coronavirus/genetics , Camelus , Phylogeny , Middle East/epidemiology , Saudi Arabia/epidemiology , Genomics , Coronavirus Infections/epidemiology , Coronavirus Infections/veterinary
17.
Front Genet ; 14: 1107893, 2023.
Article in English | MEDLINE | ID: covidwho-2285982

ABSTRACT

Introduction: Since Aedes aegypti invaded Yunnan Province in 2002, its total population has continued to expand. Shi et al. used microsatellite and mitochondrial molecular markers to study the Ae. aegypti populations in Yunnan Province in 2015 and 2016, found that it showed high genetic diversity and genetic structure. However, there are few studies on the population genetic characteristics of Ae. aegypti in Yunnan Province under different levels of human intervention. This study mainly used two common types of molecular markers to analyze the genetic characteristics of Ae. aegypti, revealing the influence of different input, prevention and control pressures on the genetic diversity and structure of this species. Understanding the genetic characteristics of Ae. aegypti populations and clarifying the diversity, spread status, and source of invasion are essential for the prevention, control and elimination of this disease vector. Methods: We analyzed the genetic diversity and genetic structure of 22 populations sampled in Yunnan Province in 2019 and 17 populations sampled in 2020 through nine microsatellite loci and COI and ND4 fragments of mitochondrial DNA. In 2019, a total of 22 natural populations were obtained, each containing 30 samples, a total of 660 samples. In 2020, a total of 17 natural populations were obtained. Similarly, each population had 30 samples, and a total of 510 samples were obtained. Results: Analysis of Ae. aegypti populations in 2019 and 2020 based on microsatellite markers revealed 67 and 72 alleles, respectively. The average allelic richness of the populations in 2019 was 3.659, while that in 2020 was 3.965. The HWE analysis of the 22 populations sampled in 2019 revealed significant departure only in the QSH-2 population. The 17 populations sampled in 2020 were all in HWE. The average polymorphic information content (PIC) values were 0.546 and 0.545, respectively, showing high polymorphism. The average observed heterozygosity of the 2019 and 2020 populations was 0.538 and 0.514, respectively, and the expected average heterozygosity was 0.517 and 0.519, showing high genetic diversity in all mosquito populations. By analyzing the COI and ND4 fragments in the mitochondrial DNA of Ae. aegypti, the populations sampled in 2019 had a total of 10 COI haplotypes and 17 ND4 haplotypes. A total of 20 COI haplotypes were found in the populations sampled in 2020, and a total of 24 ND4 haplotypes were obtained. STRUCTURE, UPGMA and DAPC cluster analyses and a network diagram constructed based on COI and ND4 fragments showed that the populations of Ae. aegypti in Yunnan Province sampled in 2019 and 2020 could be divided into two clusters. At the beginning of 2020, due to the impact of COVID-19, the flow of goods between the port areas of Yunnan Province and neighboring countries was reduced, and the sterilization was more effective when goods enter the customs, leading to different immigration pressures on Ae. aegypti population in Yunnan Province between 2019 and 2020, the source populations of the 2019 and 2020 populations changed. Mantel test is generally used to detect the correlation between genetic distance and geographical distance, the analysis indicated that population geographic distance and genetic distance had a moderately significant correlation in 2019 and 2020 (2019: p < 0.05 R2 = 0.4807, 2020: p < 0.05 R2 = 0.4233). Conclusion: Ae. aegypti in Yunnan Province maintains a high degree of genetic diversity. Human interference is one reason for the changes in the genetic characteristics of this disease vector.

18.
Curr Opin Environ Sci Health ; : 100396, 2022 Oct 06.
Article in English | MEDLINE | ID: covidwho-2241705

ABSTRACT

Wastewater-Based Epidemiological Monitoring (WBEM) is an efficient surveillance tool during the COVID-19 pandemic as it meets all requirements of a complete monitoring system including early warning, tracking the current trend, prevalence of the disease, detection of genetic diversity as well asthe up-surging SARS-CoV-2 new variants with mutations from the wastewater samples. Subsequently, Clinical Diagnostic Test is widely acknowledged as the global gold standard method for disease monitoring, despite several drawbacks such as high diagnosis cost, reporting bias, and the difficulty of tracking asymptomatic patients (silent spreaders of the COVID-19 infection who manifest nosymptoms of the disease). In this current reviewand opinion-based study, we first propose a combined approach) for detecting COVID-19 infection in communities using wastewater and clinical sample testing, which may be feasible and effective as an emerging public health tool for the long-term nationwide surveillance system. The viral concentrations in wastewater samples can be used as indicatorsto monitor ongoing SARS-CoV-2 trends, predict asymptomatic carriers, and detect COVID-19 hotspot areas, while clinical sampleshelp in detecting mostlysymptomaticindividuals for isolating positive cases in communities and validate WBEM protocol for mass vaccination including booster doses for COVID-19.

19.
Genes (Basel) ; 14(2)2023 Feb 04.
Article in English | MEDLINE | ID: covidwho-2225122

ABSTRACT

The severe acute respiratory syndrome coronavirus 2 (SARS-CoV-2) produced diverse molecular variants during its recent expansion in humans that caused different transmissibility and severity of the associated disease as well as resistance to monoclonal antibodies and polyclonal sera, among other treatments. In order to understand the causes and consequences of the observed SARS-CoV-2 molecular diversity, a variety of recent studies investigated the molecular evolution of this virus during its expansion in humans. In general, this virus evolves with a moderate rate of evolution, in the order of 10-3-10-4 substitutions per site and per year, which presents continuous fluctuations over time. Despite its origin being frequently associated with recombination events between related coronaviruses, little evidence of recombination was detected, and it was mostly located in the spike coding region. Molecular adaptation is heterogeneous among SARS-CoV-2 genes. Although most of the genes evolved under purifying selection, several genes showed genetic signatures of diversifying selection, including a number of positively selected sites that affect proteins relevant for the virus replication. Here, we review current knowledge about the molecular evolution of SARS-CoV-2 in humans, including the emergence and establishment of variants of concern. We also clarify relationships between the nomenclatures of SARS-CoV-2 lineages. We conclude that the molecular evolution of this virus should be monitored over time for predicting relevant phenotypic consequences and designing future efficient treatments.


Subject(s)
COVID-19 , Humans , SARS-CoV-2/genetics , Pandemics , Virus Replication , Evolution, Molecular
20.
J Med Virol ; 95(2): e28519, 2023 02.
Article in English | MEDLINE | ID: covidwho-2209122

ABSTRACT

Genetic recombination is an important driver of severe acute respiratory syndrome coronavirus 2 (SARS-CoV-2) evolution, which requires the coinfection of a single host cell with different SARS-CoV-2 strains. To understand the emergence and prevalence of recombinant SARS-CoV-2 lineages through time and space, we analyzed SARS-CoV-2 genome sequences collected from November 2019 to July 2022. We observed an extraordinary increase in the emergence of SARS-CoV-2 recombinant lineages during the Omicron wave, particularly in Northern America and Europe. This phenomenon was independent of the sequencing frequency or genetic diversity of circulating SARS-CoV-2 strains. The recombination breakpoints were more prevalent in the 3'-untranslated region of the viral genome. Importantly, we noted the enrichment of certain amino acids in the Spike protein of recombinant lineages, which have been reported to confer immune escape from neutralizing antibodies and increase angiotensin-converting enzyme 2 receptor binding in some cases. We also observed I42V amino acid change genetically fixated in the NSP14 of the Omicron lineage, which needs further characterization for its potential role in enhanced recombination. Overall, we report the important and timely observation of accelerated recombination in the currently circulating SARS-CoV-2 Omicron variants and explore their potential contribution to viral fitness, particularly immune escape.


Subject(s)
COVID-19 , Humans , SARS-CoV-2 , 3' Untranslated Regions , Amino Acids , Antibodies, Neutralizing , Recombination, Genetic , Spike Glycoprotein, Coronavirus , Antibodies, Viral
SELECTION OF CITATIONS
SEARCH DETAIL